4 0 obj is a complete metric space iff is closed in Proof. %PDF-1.5 This distance function x��]�o7�7��a�m����E` ���=\�]�asZe+ˉ4Iv���*�H�i�����Hd[c�?Y�,~�*�ƇU���n��j�Yiۄv��}��/����j���V_��o���b�]��x���phC���>�~��?h��F�Շ�ׯ�J�z�*:��v����W�1ڬTcc�_}���K���?^����b{�������߸����֟7�>j6����_]������oi�I�CJML+tc�Zq�g�qh�hl�yl����0L���4�f�WH� Lemma. ~"���K:��d�N��)������� ����˙��XoQV4���뫻���FUs5X��K�JV�@����U�*_����ւpze}{��ݑ����>��n��Gн���3`�݁v��S�����M�j���햝��ʬ*�p�O���]�����X�Ej�����?a��O��Z�X�T�=��8��~��� #�$ t|�� If you meant _at least_ two, then I think the total space is clearly both open --every point in the set has a basis element containing it, and closed, since every convergent sequence in the space converges to a point in the space. stream Set Theory, Logic, Probability, Statistics, Bird genes are multitaskers, say scientists, Researchers help develop sustainable polymers, New measurements show moon has hazardous radiation levels, Question about vector space intersection properties, Any biinvariant metric proportional to Killing metric.
Thus we have another definition of the closed set: it is a set which contains all of its limit points.
�`;��i� KD����$���Ќ��vM��4�9x�}}t���}�!�G���E�z�˧}��8����j���5���k�ߟKƴ~j�����վ. Open and Closed Sets De nition: A subset Sof a metric space (X;d) is open if it contains an open ball about each of its points | i.e., if 8x2S: 9 >0 : B(x; ) S: (1) Theorem: (O1) ;and Xare open sets. %���� {0} is the set that contains 0. Let be a complete metric space, . + First, if pis a point in a metric space Xand r2 (0;1), the set (A.2) Br(p) = fx2 X: d(x;p)
the union of all these open sets is the entire space, so the entire space is open. so it is closed as a compliment of an open set. 2 0 obj Mn�qn�:�֤���u6� 86��E1��N�@����{0�����S��;nm����==7�2�N�Or�ԱL�o�����UGc%;�p�{�qgx�i2ը|����ygI�I[K��A�%�ň��9K# ��D���6�:!�F�ڪ�*��gD3���R���QnQH��txlc�4�꽥�ƒ�� ��W p��i�x�A�r�ѵTZ��X��i��Y����D�a��9�9�A�p�����3��0>�A.;o;�X��7U9�x��. Theorem 1: Let $(M, d)$ be a metric space and let $(S, d)$ be a metric subspace of $(M, d)$ . x�jt�[� ��W��ƭ?�Ͻ����+v�ׁG#���|�x39d>�4�F[�M� a��EV�4�ǟ�����i����hv]N��aV )�K1���'7U���{c0��G�Y��f��] �q�zhܓ�2���X�`[{a�V�e���A�r;�7�G�(���`�����>I�D�� B����)1R]�!i5V�-�U^�S[��q�{�s�|a?��P��K�ҟGitc���q�4���qS��^���E���a�$�OO\�> �1��څ��-�Np������xW����@����[�X��I�>R��%I�!�۔��`�r�K*7���x�S�0��`���ٜ_�Bw�6mic pv��aW��-m+.TƤQk:���{����P�����.3�]�=�7;���ɫ@�Qhdi]F&��\(�|�πr��!Y�a�W�d'�? x��[[��6~ϯ���@����ll�h����.��A��tx���4 �?~EJ�dR�;H�,kh�����|s����� 1.���~A�FD���1��o�_�.W��>�(��{�v��+���:엿���6$��n�"� ��b%$2�m��� ��u�}�%�_I�7���ϊ����:���˹FT�n��Ԏ�(9�4�n��~��:��?�m����oX��q�#�����\Q^�\��T�]�lJc�ٰ+q��I��a�M{�'6f�He���D�Gպ�.�.e�ݻ7�֭��R� �?��Ԃ{�8B���x��W�MZ?f���F��7��_�ޮ�w��7o�y��И�j�qj�Lha8�j�/� /\;7 �3p,v every point in a metric space is always contained in some ε-ball (primitive open set, which depends on the metric, d).